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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Simulated distribution of average dominance in sympatry and 

parapatry. a. Scatter plot of the simulation results. A. Decreasing cumulative frequency of the 

difference. a and b show that the difference between average dominance in sympatry and 

parapatry lies on the extreme of the simulated distribution. 

 



 

Supplementary Figure 2. Difference between the proportion of the wing similar to a model 

wing generated by colour hierarchy and to the dominant allele. Heterozygotes carrying a 

silvana or illustris allele display a higher proportion of wing area similar to the dominant 

homozygote than to the hierarchy model. For others heterozygotes, the difference are close to 

zero indicating that the hierarchy model predicts the direction of dominance for all of them. 



 

 

 

Supplementary Figure 3. Predicted and observed phenotypes of heterozygotes for the 

silvana and illustris alleles. Predicted phenotypes are constructed by applying the colour 

hierarchy rules for arcuella, aurora, and tarapotensis in the first, second, and third columns, 

respectively. 

 



 

Supplementary Figure 4. Spatial distribution and sympatry of the mimicry alleles in the 

Andean foothills of Eastern Peru. This region surrounding the city of Tarapoto, San Martin, is 

divided into two adjacent biogeographic areas differing in the set of coexisting mimetic forms, 

determined by specific supergene alleles: Andean valley (west: forms A, B, C, D and E) and 

Amazonian lowlands (east: forms E, F and G). Pairs of alleles are defined as sympatric when they 

are naturally frequent and coexist in the same region.  A: bicoloratus; B: arcuella; C: 

tarapotensis; D: lutea; E: silvana; F: aurora; G: elegans. 



 

Supplementary Figure 5. Colour pattern analysis. A: Wing extracted from natural image; B: 

automatic colour attribution; C: attribution of each pixel to one of the 3 scale types and alignment 

of the wings.  



 

Supplementary Figure 6. Morphospace covered by the 648 individuals, representing 23 

genotypic combinations of 8 alleles at the supergene P. This graph was obtained by Principal 

Component Analysis using each position of the superimposed wings as a trait. Filled circles 

represent homozygous individuals, whereas open circles represent heterozygotes. Axes 1 and 2 of 

this PCA explain 34.2% of the overall variance. 



 

Supplementary Figure 7. Comparison of the two types of traits used to estimate the 

dominance coefficient. (A). A two-class discriminant vector is calculated from the two 

homozygotes. The projection of the heterozygous phenotype on this vector is used to calculate 

the dominance coefficient h
lda

. (B) The proportion of pixels resembling one of the homozygotes, 

normalized by the wing surface is used to calculate the dominance coefficient h
s
. 



 

Supplementary Figure 8. Comparison of the two estimates of the dominance coefficient h, 

based on proportion of surface (h
surf

) and on Linear Discriminant Analysis (h
LDA

). Scatter 

plot show the correlation between average dominance for both estimates.  



SUPPLEMENTARY TABLES 

Class Genotypes Number of 
individuals 

Number of 
broods 

Geographic 
relationship 

H
et

er
o

zy
go

te
s 

bicoloratus/tarapotensis 50 5 Sympatric 

aurora/silvana 63 4 Sympatric 

tarapotensis/illustris 11 1 Sympatric 

arcuella/silvana 52 9 Sympatric 

tarapotensis/silvana 76 7 Sympatric 

bicoloratus/arcuella 49 4 Sympatric 

tarapotensis/arcuella 35 2 Sympatric 

elegans/aurora 28 2 Sympatric 

bicoloratus/lutea 17 1 Parapatric 

aurora/lutea 32 2 Parapatric 

bicoloratus/aurora 31 4 Parapatric 

aurora/tarapotensis 59 5 Parapatric 

arcuella/lutea 13 1 Parapatric 

elegans/arcuella 16 3 Parapatric 

aurora/arcuella 48 4 Parapatric 

H
o

m
o

zy
go

te
s 

bicoloratus/silvana (*) 22 4 - 

aurora/aurora 12 2 - 

elegans/silvana (*) 63 6 - 

tarapotensis/tarapotensis 61 9 - 

arcuella/arcuella 10 3 - 

lutea/lutea 7 1 - 

illustris/illustris 1 1 - 

 silvana/silvana 67 8 - 

 

Supplementary Table 1. Table of crosses.  



 

 

Supplementary Table 2. Sequences of the primers used to amplify the three microsatellite loci 

located in the supergene P region. Note that the forward primer contains the reverse complement 

of the M13 tail which appears in bold font. 

 

Microsatellite 

name 

Primer 

name Primer sequence (5’ to 3’) 

P3 

P3F CACGACGTTGTAAAACGACCAGCACTTTATCTAGAAATTATATAGA 

P3R GCAHTGCAAAGGATGGTAATG 

P10 

P10F CACGACGTTGTAAAACGACTCGTAGGTATTCGGAGAACG 

P10R CTCTGCGTTCCCATTAAGAA 

P11 

P11F CACGACGTTGTAAAACGACACCACATGGGGGTCTAAAGT 

P11R CGAACTTCCGTTGCACTCT 



SUPPLEMENTARY METHODS 

 

1. Controlled crosses. 33 independent broods were obtained from controlled crosses between 

wild-caught individuals. In total, 843 individuals were analysed (600 heterozygotes and 243 

homozygotes), with the heterozygous genotypes in 8 sympatric combinations and 8 parapatric 

combinations (table S1 and Supplementary Figure 4). For each specimen, the body was separated 

from the wings, snap-frozen and subsequently used for DNA extraction. Wings were stored in 

individual glassine envelopes and subsequently used for wing pattern digitization and analysis. 

Individuals for which only one wing could be analysed (e.g. due to wing damage) were therefore 

excluded from calculations performed on both wings. 

Our crosses do not include elegans or bicoloratus homozygotes, due to their rareness in wild 

populations and the difficulties in breeding these genotypes. In these two cases, we used 

heterozygotes with the silvana allele as a substitute. This substitution had little effect on the 

results because silvana is the most recessive allele in the dataset. Indeed, silvana heterozygotes 

are very close or even undistinguishable from the corresponding homozygotes in the PCA 

phenotypic space (Supplementary Figure 6). This is the case, for instance, for the aurora allele 

(the closest to elegans in terms of phenotype). Furthermore, heterozygotes with the bicoloratus 

allele all fall very close to each other in the PCA space indicating its strong dominance over other 

alleles. Among all heterozygotes for the bicoloratus allele, bicoloratus/silvana was the furthest 

from all other homozygotes, therefore appearing as the most conservative substitute for the 

bicoloratus homozygous genotype. Finally, as expected for the top dominant allele, bicoloratus 

homozygotes are rare in natural populations where nearly all specimens with the bicoloratus 

phenotype are heterozygous
1
. Selection is therefore likely to act on the bicoloratus allele mainly 

in heterozygous individuals.  

 

2. Genotyping. Genotyping was carried out using three microsatellite loci (P3, P10 and P11) 

amplified using primers described in Table S2. The association between microsatellite length 

polymorphism and wing pattern alleles of the supergene was checked using broods where wing-

pattern genotypes were already known or were unambiguous
2
. Polymerase Chain Reaction (PCR) 

was carried out in a 10 µl mix composed of 2µl gDNA,1x DreamTaq buffer, 200µM dNTPs, 

0.5µM universal M13 primers labelled with YAKYE, AT565, AT550 or FAM from Eurofins, 0.5 

µM reverse primer, 0.01 µM forward primer and 0.25units of DreamTaq. PCR performed using a 

Techne TC-5000 thermocycler with 2 min at 94°C, followed by 35 cycles with 30 sec at 94°C, 30 



sec at 53°C and 30 sec at 72°C, and a final elongation phase at 72°C for 12 minutes. Fragment 

analysis was run on an Applied Biosystem 3130 genetic analyser, using SoftGenetics 

GeneMarker Version 2.4.0 for analysis. 

3. Picture analysis by Colour Pattern Modelling (CPM). In order to quantify wing colour 

pattern variation, we built appropriate procedure able to analyse patterns comprehensively from 

pictures of wing, referred to as Colour Pattern Modelling (CPM), and summarized in 

Supplementary Figure 5. 

Normalized photographs. First, for each specimen, both sides of each forewing and hindwing 

were photographed in normalized light conditions (CIE Standard Illuminant D50), with a high 

colour rendering light source (Philips Master TL-D 90 Graphica pro). A scale indicator was 

included in each picture, and the white balance was normalized. A Nikon D90 digital camera 

with a Nikon micro 105/2.8G ED VR lens was used to capture high resolution images with 

accurate colour rendering. The right wing was analysed, unless extensive wing damage precluded 

this, in which case the left wing was mirror-transformed during the analysis. In H. numata, 

ventral and dorsal sides display a similar colour pattern, with the exception of the regions where 

hindwings and forewings overlap, which are composed of modified grey scales on their ventral or 

dorsal side, respectively, thereby replacing colour pattern expression. Therefore, we used the 

dorsal side of forewings and the ventral side of hindwings to perform the analysis on the whole 

pattern for both forewing and hindwing.  

Wing extraction. The first step of CPM relies in identifying and extracting outline of wings on 

pictures. Wings were automatically detected in the images using their colour difference with the 

homogenous white background, and were then precisely extracted using the marker-based 

watershed transformation 
3
 along the image colour gradient 

4
. This segmentation method finds the 

maximum intensity of the colour transition between the marked wings and the marked 

background, which was then considered to be the wing outline. 

Colour number reduction and colour attribution. Then, the pattern was modelled by considering 

explicitly the mosaic distribution of colour across the wings, which allows describing efficiently 

the variation in patches boundaries. A set of discrete colours characteristic to each wing was first 

identified using an algorithm based on colour histograms 
5,6

. After simplifying the spatial 

structures of wing images 
7
, pixels were then attributed to each colour (black orange and yellow) 

using a simple threshold. 



Colours classes were extracted from the histogram by the following procedure. First; to smooth 

the colour distribution on the histogram and simplify colour histogram processing, the image was 

projected from the 3-dimensional RGB colour space to a 2-dimensional (2D) colour space, where 

dimension 1 corresponds to luminance (the Y component in the Ycrbr colour space), and 

dimension 2 to the major colour variation axis using all wing images. This projection preserved 

about 97% of colour variance in the images. A 2D-histogram, representing the distribution of 

pixel colour, was computed in the same 2D-projected colour space for all wings. Each separate 

colour on the wing was defined as a local maximum on the 2D-histogram. These local maxima 

are always numerous because of the complexity of the natural image. To prevent over-

segmentation, minor peaks were automatically removed by consideration of their proximity to 

and separation from neighbouring peaks. We performed a watershed transformation on the 

additive inverse of the 2D-histogram to partition the colour space among the major peaks 
8
. At 

the end of this process, each wing could be associated with a set of characteristic colour 

partitioning the colour space and accounting for the colour variation actually present on the wing 

RGB image.  

In order to preserve the patch structure of colour patterns, we also performed a routine to merge 

neighbouring pixels of homogenously-coloured regions in the images 
7
. The scale indicator 

within each image was first used to rescale images to an output length of around 512 pixels, 

leading to a mean spatial resolution of 10.9px/mm. Each reduced image was then transformed 

into a mosaic of homogeneously-coloured spatial zones. A watershed transformation of the image 

colour gradient was used to carry out the mosaicking 
4
. Each homogenously-coloured region was 

then attributed a colour according to the classification given by the segmented histogram.  

Finally, the attribution to the different colours (black, orange, and yellow) was done 

automatically using a threshold on RGB values, followed by manual checking to correct errors, 

which were mostly due to minor damage to parts of the wings, resulting in the final segmented 

image (Supplementary Figure 5). 

Alignment. For the wing images to be efficiently comparable pixel by pixel, a proper homology 

of pixel positions was needed. Since the pattern is composed by multiple elements varying across 

the different morphs, the differences in patterns mostly relies in differences in position and shape 

of these elements relative to the others. These differences can be described efficiently only if 

patterns are aligned in a way that they display a maximal match relative to each other. This match 

was obtain by transforming each set of processed images into a common coordinate system 



which maximize similarity between each wing pattern to a wing pattern model (i.e. the ‘mean 

pattern' of all individuals), treating forewings and hindwings separately. Similarity was measured 

by the Mattes implementation of mutual information metric 
9–11

, which is minimal when colour 

patches are aligned in an optimal compromise. The one+one evolutionary optimizer 
12,13

, 

implemented within the ITK free image proceeding library in C++ 
14–17

, was used to find the 

scale, rotation and translation parameter set that minimized this mutual information value. This 

procedure created an initial registration set based on wing shape, which allowed generation of the 

wing pattern model. Each wing was then recursively aligned to the model, until the variance of 

the metric stabilized (variance varying less 1% 
18

). At the completion of this process, all wings 

could be considered to be positioned in the same physical space, with pixel locations and colour 

values among wings being comparable among all individuals. 

Validation of CPM method. The phenotypic diversity of wing patterns in all broods studied was 

explored by Principal Component Analysis (PCA), as a classical dimensionality reduction 

approach for stacks of images. Each non-background pixel common to all stacked wing images 

was considered as a trait in the PCA 
19

. MANOVA on those selected components showed that 

genotypes were significantly discriminated, confirmed by the leave-one-out cross-validation 

fraction of the linear discriminant classifier. As few as 3 components were sufficient to classify at 

100% rate the homozygotes for each phenotype. This high rate of classification confirms that the 

CPM method characterizes the complex colour patterns well. The two first components of the 

PCA performed on the wing pattern of 648 individuals are presented in Supplementary Figure 6. 

Dominance estimation.To quantify dominance, we used the so-called dominance coefficient h. 

For a given quantitative trait T, the dominance of allele a relative to allele b is given by the 

equation:  where Tab , Taa and Tbb represent the mean trait values for heterozygotes 

ab, and both homozygotes aa and bb, respectively. Strict dominance of a with respect to b 

corresponds to h = 1, strict recessivity is represented by h = 0, and intermediate values (h ~ 0.5) 

represent co-dominance. All dominance coefficients were normalized so that allele a corresponds 

to the more dominant allele. This measure of dominance is based on a one-dimensional value of a 

trait. Because of the high dimensionality of wing characters, a dominance coefficient was 

estimated using two alternative metrics of T leading to two measures, hsurf and hLDA 

(Supplementary Figure 7). 



For the first estimation of dominance, hsurf, presented in Supplementary Figure 7B, the trait T 

used here to quantify the colour pattern variation was derived from the relative proportion of 

wing area shared between the heterozygote and either homozygote. For a given pair of alleles, a 

mean wing pattern was built for each homozygote, calculated by setting each pixel to the colour 

shared by the highest number of specimens bearing this genotype. For each trio of genotypes 

considered, we calculated the number of pixels of the heterozygote that were similar to one 

homozygote and different from the other, normalizing by the wing surface (in pixels). This 

calculation could be performed on 93.1% of the wing area on average, because a small proportion 

of the heterozygote wing area matches neither homozygote models.  

The second estimation of the dominance coefficient, hLDA, presented in Supplementary Figure 

7A, was based on the projection of the phenotypes on a two-class linear discriminant vector 

which best separates the two corresponding homozygous phenotypes described by the 15 first 

components of the PCA space.  

4. Validation of the dominance estimation. In the main document, only the hsurf was presented 

for simplicity, but the second measure of the coefficient of dominance, hLDA, validated the 

quantification approach. These two measures (hsurf and hLDA) were indeed highly correlated 

(R² = 0.92, p < 0.0001), indicating their consistency (Supplementary Figure 8.). 

5. Sex and brood effect. To check whether the sex or the genetic background of the individuals 

tested could bias the differences in dominance in sympatric and parapatric crosses, we tested the 

effect of these two factors on the dominance coefficient h.  

First, females show slightly but significantly higher dominance values than males (t = -2.51, 

p = 0.025; for hsurf; t = -3.26, p = 0.0058 for hlda), with a mean difference of h between males and 

females for each genotype of 0.027 and 0.022, respectively. The difference between male and 

female dominance coefficients is very low compared to the differences in dominance coefficients 

between sympatric and parapatric crosses, and thus has a negligible influence on our results.  

Second, testing the effect of brood on the dominance coefficient reveals that the genetic 

background had no effect on dominance measure (Nested ANOVA, (F27,471 = 0.44; P = 0.97).  

6. Significance of sympatry effect. To confirm that dominance was higher in sympatric crosses, 

we compute the significance of the difference between the average dominance of sympatric 

crosses vs parapatric crosses by a permutation test on sympatric relationships. Because these 



permutations aimed at testing whether dominance was higher in sympatry than in parapatry, the 

tarapotensis/arcuella genotype was excluded since this genotype shows heterozygote-specific 

mimicry and therefore does not match the general prediction that dominance should be higher in 

sympatry due to positive selection for dominance of one allele.  

These permutations were performed by randomizing the location of alleles in one of the two 

populations present in our study and then inferring sympatric relationships. These simulations 

were carried out while keeping allele number per population identical to the real dataset. The 

differences observed between average dominance in sympatry and parapatry lies on the extreme 

of the possible values in the 10,000 permutations. These permutations confirmed a significant 

effect of sympatry on dominance (P = 0.011), highlighting the positive selection acting on 

dominance (see Supplementary Figure 1). 

7. Mechanisms of dominance. We used permutation tests to evaluate the significance of the 

difference between the percentage of colour expression explained by colour hierarchy for 

heterozygotes with one of the alleles from the ancestral class, and for heterozygotes between 

alleles of the derived class. We generated permutations by randomizing the within-class vs 

between-class attribute of heterozygotes. These permutations showed the significance of the 

observed difference (p = 0.025). 

To test for an association of allelic classes with alternative models of dominance (allelic 

dominance vs. colour hierarchy) we compared the match of heterozygotes to the phenotypes 

predicted by either model. For each heterozygote, the phenotype predicted by the allelic 

dominance model was represented by the phenotype of homozygotes for the more dominant 

allele, whereas the phenotype predicted by the colour hierarchy model was generated by applying 

the hierarchy rules to the corresponding pair of homozygotes. We then computed the proportion 

of the wing of actual heterozygous wing matching the colour hierarchy model (ph) and the 

proportion of the wing matching the allelic dominance model (pa) and used the difference of 

proportions between the two models (pa - ph) (Supplementary Figure 2). A difference close to 0 

indicated that the colour hierarchy model accurately predicts the observed direction of 

dominance and thus validate colour hierarchy as a reliable mechanism of dominance. A negative 

value then indicates that the allelic dominance model was a better predictor of heterozygotes 

phenotype than the colour hierarchy model.  



Heterozygotes with one of the allele from the ancestral class displayed a negative pa - ph 

difference indicating that allelic dominance model is a better descriptor of the phenotype for 

these heterozygotes. All other heterozygous genotypes display values close to 0, indicating that 

the colour hierarchy model is an accurate predictor of the observed direction of dominance 

between alleles from the derived class. The pa - ph difference was significantly lower in 

heterozygotes composed of ancestral and derived alleles than in heterozygotes with two derived 

alleles (Nested ANOVA, F1,471 = 48.89 ; P < 0.0001 ), confirming the existence of two distinct 

mechanisms of dominance at the supergene P, and their segregation between/within allelic 

classes.  

To visualize the consequences of this transgression on the phenotypes of heterozygotes carrying 

these alleles, we compared wing colour patterns predicted by the colour hierarchy model to those 

actually observed in the controlled crosses (Supplementary Figure 3). This reveals striking 

differences in pattern, especially in the amount of melanic patches, showing that many black 

patches carried by the ancestral alleles were recessive.  
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